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Persistence Search - A New Search Strategy For
The Dynamic Shortest Path Problem

Man-Tak Shing® and Michael M. Mayer® -\

ABSTRACT

The research reported in this paper deals with the problem of searching
througi: an unkiiOwii iusdi, Oy a physical agent such as a ropot. Tue un-
known terrain over which the agent will travel is represented by an
undirected graph. The agent has no prior knowledge of the graph. It can
only learn about its environment by physically roaming it. Given a starting
location s, the agent tries to reach a target location ¢ using the minimum
amount of physical movement. This problem, which is a natural generaliza-
tion of the classical shortest path problem, will be referred to as the dynamic
shortest path problem. Most of the classical shortest path algorithms per-
form very poorly in the scenario of a physical agent traversing an iritially
unknown search space. They do not attempt to minimize the amount of
physical movement required by the agent to reach the goal location. In
order to overcome the failings of these search algorithms in dealing with
searches of this particular nature, a new search strategy, called persistence
search, is developed and presented in this paper.
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1. INTRODUCTION

One of the central problem-solving techniques in Al is the use of search. In this paper,
we focus our attention on the problem of searching through an unknown terrain by a physical
agent such as a robot. The unknown terrain over which the agent will travel is represented by
an undirected graph. The agent has no prior knowledge of the graph. It can only learn about
its environment by moving through it. Starting at a given vertex s, the agent tries to reach a
target vertex ¢ using the minimum 2mount of physical movement. This problem, which is a
natural generalization of the classical shortest path problem, will be referred to as the dynamic
shortest path problem. If the agent has prior knowledge of the entire graph, it can minimize
its physical movement by first computing the shortest path from 5 to r using the standard
shortest path algorithms and then moving towards ¢ along the shortest path. (See for exam-
ple, [2] and [3] for a survey of the shortest path algorithms.) Without complete information
of the entire graph, no optimum algorithm (i.e. one that always produces the shortest path
from s to ¢ in any given graph) can exist. The reason is because, without prior knowledge of
the entire graph, the agent must physically roam its environment, learning about 1t by sensing
the immediate surroundings. A state of any state-space search algorithm now depends on
both the current physical location of the agent and the total amount of physical movement that
has been made already. Since the energy or time involved in physical movement cannot be
recovered once expended, any optimum algorithm must require the agent to traverse along the
shortest path from s to t at all times. This is impossible since the algorithm does not have
any prior knowledge of the graph to start with. Hence, any algorithm for solving the dynamic
shortest path problem is a heuristic algorithm. Such algorithm is considered to be "good" if it

produces paths which are not much longer than the shortest paths most of the time.

Most of the classical shortest path algorithms perform very poorly in the scenario of a
physical agent traversing an initially unknown terrain. They do not attempt to minimize the
amount of physical movement required by the agent to reach a desired goal location. These

algorithms ignore the physical aspects of search, measuring the quality of their solutions only
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by the amount of computation required. In order to overcome the failings of these search
algorithms in dealing with searches of this particular nature, new search strategies and new

measures for evaluating such strategies are needed.

Ore measure for comparing the performance of the algorithms for dynamic problems is

the ratio

the total distance traversed by the agent
the length of the shortest path from s to ¢

In [4], Papdimitriou and Yannakakis studied several versions of the dynamic shortest
path problem. They have devised search strategies that cptimize the ratio R for tw ~pecial
cases: layered graph with bounded width and two-dimensional scenes with unit square obsta-
cles. They further showed that no bounded ratio is possible for slightly more general graphs
and scenes, and the computational problem of devising optimal search strategies for the
dynamic shortest path is PSPACE-Complete. Hence, a new heuristic search sr itegy, called
persistence search, is developed and presented in this paper to tackle the dynamic shortest

path problem for general graphs.

2. PERSISTENCE SEARCH

As stated in the previous section, the agent begins with no knowledge of the graph. It
can learn about the graph by moving from vertex to vertex via the edges incident to the ver-
tices, and it can remember the vertices and edges which it has explored by dropping markers
along the way [1]. At each vertex v, the agent has the ability to discover all the edges
incident to the vertex v. Additionally, for each unexplored edge incident to v, the agent has
some estimation of the distance from the vertex v to the target vertex ¢ via the unexplored
edge. Starting at the vertex s, persistence search directs the agent towards the destination ver-

tex ¢t as follows:




Algorithm I

Begin

(1 ) EXIT := FALSE.

2) c:=3s; /* ¢ denotes the current position of the agent */

(3) L :=empty; /*L denotes the set of edges to be explored, called frontier edges */
(4 ) Repeat

) Mark ¢ as explored.

6) Ifc =t

() Then EXIT := TRUE /* search has succeeded */

8) Else Begin

9) For each unexplored edge (c,w) do

(10) Begin

(1 If w is explored Then mark the edge (c,w) as explored

(12) Else add the edge (c,w) to the set L.

(13) End.

14) If L is not empty

(15) Then Begin

(16) Among the frontier edges in L, find the frontier edge ¢ that minimizes

the equation
fle) = pf xgv)+hie),

where v is the explored vertex adjacent to e. g (v) is the shortest
distance from ¢ to v using only edges in the explored subgraph,
h(e) is the estimated future cost of e, which is the lower bound
estimate for the distance from v to ¢ via the unexplored edge e,
and pf is the persistence facior, a real number between 0.0

and 1.0 for discounting the cost of "backtracking” to the frontier

edge e.

1)
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an Move the agent from ¢ to v along the shortest path using only edges

in the explored subgraph.

(18) Mark the edge e explored.

(19) Let w be the vertex at the other end of e. Move the agent along e to w.
(20) c =w;

(21) End

(22) Else EXIT := TRUE /* search has failed */

(23) End

(24) Until EXIT;
End.

While the above algorithm is very close to the algorithm for A" search [5], one should
note the subtle but important differences. The function g(v) is computed from the current
vertex ¢ to v, rather than from the initial starting vertex s. This is a logical choice for g (v)
since the agent must be moved physically from the current position ¢ to the vertex v before it

can resume its exploration from v.

A second difference is in the use of the persistence factor pf to bias the cost function
g (v). The persisience factor varies between 0.0 and 1.0 and serves to discount the cost of
"backtracking” versus estimated future cost, h(e). By varying the persistence factor, the
behavior of the persistence search can be dramatically altered. When the persistence factor is
0, the cost of "backtracking” from one vertex to another becomes zero and the formula for

rating the frontier edges reduces to:
f(e) = h(e) o))

which is equivalent to that used for best-first search [5]. Each frontier edge is ranked only
according to its estimated future cost. The agent will move about the explored search space
without regard for the amount of physical movement required, traversing to whichever vertex

is closest to goal.
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When the persistence factor is equal to 1, persistence search behaves more like hill-
climbing search [S]. Since the cost of moving from the current vertex to another verex in
the explored subgraph becomes more expensive, the agent tends to be more persistent in con-

tnuing the exploration from a vertex neaier to the present locaton.

3. SEARCHING THROUGH A RECTILINEAR MAZE

As an initial step in evaluating the performance of the proposed algorithm, persistence
search is used to tackle a restricted version of the dynamic shortest problem: the case of an

agent traversing a random rectilinear maze.

The unknown terrain over which the agent will travel is represented by a rectilinear

graph or grid-graph as shown in Figure 1.

{a) arectilinear maze (b) the corresponding grid-graph

Figure 1
Vertices are arranged in a rectangular fashion with edges connecting vertices immedi-
ately above, below, right and left (north, south, east and west respectively), and the vertices
are distinguished from one another by their X and Y cocrdinates. Locations within the maze
are either passabie or impassable. Impassable locations in the maze are represented by

disconnected vertices in the graph, making them unreachable from any direction.
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The agent begins with no knowledge of the graph. It can learn about the graph only as
it moves from vertex to vertex via the edges connecting them. The agent’s ability to sense its
surroundings is limited to determining whether the immediate neighbors of the current vertex
are passable or impassable. Since the terrain is a grid-graph, the agent is only able to move

and survey in the four cardinal directions.

Additionally, the agent knows its position relative 10 the goal. Several differcnt means
could be used to accomplish this. If the agent initially knows the goal’s position relative to
its own, it can maintain this knowledge through dead reckoning as it moves about the maze
from its initial starting point. Using this information, the agent can determine the rectilinear
distances from the goal to its current location as well as to any of the passable locations adja-
cent to its current location. Rectilinear distance is a lower bound for the number of steps
necessary to move from the current position to ihe goal. The rectilinear distance from a ver-
tex v to the goal ¢t can be computed using the formula

(X, -X, ! + 1y, -1 1

where (X, Y, ) and (X,, Y,) are the coordinates of v and ¢ respectively.

We can also direct the agent to the goal using either an active guidance system like radar
or a passive guidance system like a beaconing system. While only lines of beuring are
required to choose which imn:ediate neighbor is closer to the goal, the goal's exact location is
needed to totally order the search space. If the goal is northeast of the current location, then
the immediate neighbors to the north and the east are closer to the goal and have the same
rectilinear distance to the goal. However, when comgaring widely separated locations, a rank-
ing for the locations based on their closeness to the goal cannot be determined without the
exact location of the goal. If location P is north of the goal and location @ is south of the
goal, there is no static way to tell which one is closer merely by their relative direction to the
goal. However, by triangulating lines of bearing taken from different locations, the exact

location of the goal can be determined.




alwav, " .ows the cost of traversing an unexplored edge. Hence, instead of keeping track of a
set of frontier edges, we can simpiify the implementation of the algorithm by keeping track of

the set of unexplored vertices that are adjacent to the frontier edges. The algorithm for
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searching through an unknown rectilinear maze is as follows:

Algorithm 11

Begin

(1 ) EXIT := FALSE;

2) c¢ :=ys; /* ¢ denotes the current position of the agent */

(3 ) L :={s}); /*L denotes the set of vertices to be explored. called frouzier vertices */
(4 } Repeat

(5) Remove ¢ from L.

(6 ) Mark the vertex ¢ explored.

(7) ifc =1

(8) Then EXIT := TRUE /* search has succeeded */

9) Else Begin

(10) L =L \y { the set of unexplored immediate neighbors of ¢ }.
(1) If L is not empty

(12) Then Begin

(13)

Among the frontier vertices in L, find the frontier vertex v that
minimizes the equation
fO) = pf xg)+h(v),
where g (v) is the shortest distance from ¢ to v using only
paths with explored vertices as intermediate vertices, h(v) =
IX, =X, 1+ 1Y, =Y, " and pf is the persistence factor

with value between (0.0 and 1.0.

Since tr. cdges in the grid-grzph all have equal length, we can assume that the agent
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(14) Mov- the agent from ¢ to v along the shortest path using only

explored vertices as intermediate vertices.

(15) c =V,

(16) End

a7n Else EXIT := TRUE /* search has failed */
(18) End

(19)  Unul EXIT;
End.

In order to reduce the computation required by persistence search, we further modify the

algorithm as follows:

Algorithm 111

Begin

(1 ) EXIT := FALSE;

2) c¢:=35; /* ¢ denotes the current position of the agent */

(3 L :={s}), /*L denotes the set of vertices to be explored, called frontier vertex */

(4 ) Repeat

(5) Remove ¢ from L.

(6 ) Mark the vertex ¢ explored.
(7) Ifc =1

(8) Then EXIT := TRUE /* search has succeeded */

9) Else Begin

(10) L =L \y { the set of unexplored immediate neighbors of ¢ }.

(11 If ¢ has an unexpliored immediate neighbor w such that h(w) < h(c)
where h(w) and h(c) denote the rectilinear distances from w and ¢
to the goal location 1 respectively

(12) Then ¢ :=w and move the agent to the vertex w
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(13) Else If L is not empty
(14) Then Begin
(15) Among the frontier vertices in L, find the frontier vertex v that

minimizes the equation
fO) = pf xgv)+h(v),
where g (v) is the shortest distance from ¢ to v using only
paths with explored vertices as intermediate vertices, A(v) =
IX, =X, l+ 1Y, -Y, |, and pf is the persistence factor
with value between 0.0 and 1.0.
(16) Move the agent from ¢ to v along the shortest path using only

explored vertices as intermediate vertices.

an c =V,

(18) End

(19) Else EXIT := TRUE /* search has failed */
(20) End

(21) Unul EXIT;
End.

Now, the agent always moves to the immediate neighbor w of the current vertex ¢ if
h(w; < h(c) (lines 11-12 in Algorithm III). A simple north, east, south, west preference
serves as a heuristic to break ties between neighbors of equal estimated future cost. This
modification greatly reduces the computation required by the agent since it no longer has to
examine the list of frontier vertices whenever ¢ has an immediate neighbor with a cheaper
future cost. Algorithm III can be regarded as a hybrid of hill climbing search and persistenc2
search. Note that when pf = 1, the physical moves produced by Algorithms II and IHl are
identical for ail rectilinear mazes. When pf < 1, Algorithms II and III only produced ident-

cal moves for rectilinear tree mazes, i.e. mazes without circuits.
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4. EVALUATING THE PERFORMANCE OF THE ALGORITHMS
There are two factors governing the performance of the proposed algorithms: the compu-
tational efficiency of the algorithms and the quality of the solutions produced. As mentioned

in Section 1, the quality of the solution can be measure by the error ratio R, which is equal to

the total number of edges traversed by the agent to reach the goal
the length of the shortest path from s to ¢ in the entire maze

The computational efficiency of the algorithms can be measured by counting the total number
of current vertices examined plus the total number of vertices examined while computing the

shortest paths from a current vertex back to the frontier vertices via the explored subgraph.

Given any integer n and any pf value between 0.0 and 1.0, one can always come up
with a worst-case maze with n vertices that requires O (n 2) vertex-examinations and the solu-
tion produced by the algorithms has an O(n) error ratio. Figure 2 shows two worst-case

examples one for the pf value of 0 and the other for the pf value of 1.

o
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(a) a worst-case example for pf = 0.0 (b) a worst-case example for pf = 1.0
Figure 2

While the agent may have to visit every vertex in the graph before finding the goal in

the worst-case, the total distance traversed by the agent may be substantially lower on the
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average. In order to better judge the performance of the persistence search algorithms, we
have implemented Algorithms II and IIT as well as a hill-climbing search algorithm in the C
programming language and applied the algorithms to a large set of random mazes generated

by the algonthm described in the next section.

4.1 MAZE GENERATION

The random maze generator operates in two modes, creating mazes with or without
cycles. The mazes without cycles can be naturally represented as trees and those with cycles
can be represented as graphs. We have separated the tree mazes from the nontree mazes
because of the way persistence search backtracks. When backtracking, persistence search
always travels to the cheapest frontier vertex (i.e. the frontier vertex with the cheapest com-
bined cost) along the shortest path in the explored subgraph. This gives fzrsistence search an
extra advantage over hill-climbing search. The hill-climbing search, being a variant of depth-
first search, does not take short-cuts and always traces back to the cheapest frontier vertex
along the path from which it came. In non-tree mazes, this results in a large amount of back
and forth movement by the hill-climbing search algorithm as it winds its way out of large
open areas. This inefficient behavior can be seen clearly in Figure 3, where the hill-climbing
search requires the agent (which at vertex 13) to visit all blank vertices before backtracking to
vertex 14, while persistence search allows the agent to go from vertex 13 to vertex 14 via ver-
tex s in two mechanical steps. If the maze is a tree, there are no circuits and persistence

search no longer has such an advantage.

The maze generation algorithm, makemaze, uses a depth-first algorithm to create a ran-
dom path through an initially empty maze, placing obstacles at intervals along its path accord-
ing to a parameter called maze density. Makemaze begins by laying obstacles along the boun-
dary of the rectangular maze. It then picks a random starting point within the maze. The

algorithm maintains a trail of the locations in the maze it has explored.
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Figure 3

At each step along its path, it randomly determines whether it must turn from its current
direction. If so, it places an obstacle in the direction it was going and continues on in a ran-
dom new direction. The higher the maze density, the more likely it is that the path will turn
and an obstacle will be created. If the maze generator becomes "blocked” by its own trail or
obstacles, it backtracks along its original trail until it comes to a new location and resumes its

exploration.

If makemaze is restricted to creating mazes which are trees, it must also check to see if
the next location it is going to explore will create a cycle in the maze. If so, it places an obs-
tacle there instead and chooses a new direction. Hence, there is only one path between any

two vertices in a tree maze.

4.2 THE HILL-CLIMBING SEARCH

For comparison with persistence search, a hill-climbing search algorithm was imple-
mented. We chose to compare the proposed algorithm against the hill-climbing search

because the hill-climbing search (or some other depth-first search variant) is the only
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reasonable alternative to persistence search in guiding a physical agent through an unknown
bounded terrain. The other alternatives, like best-first search or some variants of A* search,
require too much movement on the part of the physical agent, causing it to physically

crisscross known search space to expand new vertices.

The hillclimbing search algorithm is very similar to the algorithm used to create the
maze, as they both are variants of the depth-first search algorithm. The hill-climbing search
algorithm uses a simple stack to keep track of its current path and a bitmap to mark the ver-
tices it has visited. It places the unexplored immediate neighbors of the .uiict vertex on the
stack according to the non-increasing order of their estimated future costs, leaving the one
with the cheapest estimated future cost on the top of the stack. It then pops a vertex off the

stack, updates the current vertex and moves the physical agent to the new current vertex.

4.3 SPEEDING UP THE PERSISTENCE SEARCH

A major portion of the computation is spent in Line 13 of Algorithm II and Line 15 of
Algorithm III for finding the shortest-path from the current vertex to the cheapest frontier ver-
tex in the list L. Since the edges in the grid-graph all have equal length, a simple breadth-
first search (BFS) is used to scan the explored subgraph for the cheapest frontier vertex each
time the list L has to be examined. In order to reduce the time required to compute these
shortest paths, "branch-and-bound” is introduced into the breadth-first search as follows. At
the beginning of the BFS, the lower bound for the cheapest combined cost is initialized to the
smallest estimated future cost of all the frontier vertices in L and the upper bound for the
cheapest combined cost is initialized to positive infinity (or some very large positive number).
During the course of the search, the upper bound for the cheapest combined cost is set to the
lowest combined cost of the frontier vertices visited so far while the lower bound for the
cheapest combined cost is set to the sum of the current depth reached by BFS plus the
cheapest estimated future cost among all frontier vertices in L. To keep track of the smallest

estimated future cost among all the frontier vertices in L, the vertices in L are maintained in
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the form of a min-heap, with the frontier vestex which has the smallest estimated future cost
on top. The min-heap is updated whenever vertices are added to or deleted from L. The
search terminates when the lower bound is greater than or equal to the upper bound, thus sig-
naling that the frontier vertex with the lowest combined cost has been found. The agent can
then traverse from the current vertex ¢ to the frontier vertex v via the search tree constructed

by BFS.

4.4 THE EXPERIMENTAL RESULTS

Two experiments were conducted to study the performance of the proposed algorithms.
In the first experiment, a total of 8000 runs were performed and analyzed empirically. Input
to the first experiment was generated as follows. Two thousand mazes, in groups of 50, were
created using the algorithm described in Section 4.1. The mazes in each grc.mp were gen-
erated based on a unique combination of maze type, maze density and dimension of the
underlying rectangular grid. (See Table 1 for a summary of the mazes.) Two pairs of pass-
able locations were chosen from each maze, and two experimental runs were performed for

each of the location pair [a, b] chosen, once from a to b and once from b to a.

The results of the first experiment are summarized in Tables 2-7. From the experimental
results, one can conclude that persistence search (both Algorithms II and IH) outperforms
hill-climbing search for both nontree mazes and tree mazes (Tables 2a, 2b, 3a and 3b). The
solutions produced by Algorithms IT and III are equally good (Tables 4a and 4b) but Algo-
rithm III runs much faster than Algorithm II (Tables 6a, 6b, 7a and 7b).

For nontree mazes, Algorithm III achieves its best results when the persistence factor is
between 0.4 and 0.6, producing solutions that are at most 1.45 times as long as the best possi-
ble solutions for sparse nontree mazes (mazes with density < 0.5) and 6.5 times as long as the
best possible solutions for dense nontree mazes (mazes with density = 0.9). Moreover, these
performance ratios grow very slowly when compared to the growth rate of the sizes of the

search space. Table 7a shows the computational overhead of Algorithm IIl for nontree mazes.
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For persistence factors between 0.4 and 0.6, Algorithm III takes, on the average, between 15
to 24 computational steps for each physical step produced, which is an acceptable trade-off
given today’s high-speed computers. (A computational step corresponds to either a vertex
examination or a heap operation. Each vertex examination involves marking the vertex as
visited and adding the vertex’s unvisited neighbors to the agenda, and each heap operation
involves comparing a node against its parent and interchanging the positions of the two
nodes.) Table Sa shows the comparisons between the solutions produced by Algorithm III and
hill-climbing search for nontree mazes. Algorithm Il clearly outperforms hill-climbing search
in terms of both the frequency of producing better solutions and the average length of the

solutions produced.

For tree mazes, Algorithm IIl achieves its best results when the persistence factor is
between 0.2 and 0.4. Although the paths for tree mazes produced Ly Algorithm III are on the
average shorter than those produced by hill-climbing search (Table 3b), Algorithm III only
produces better solutions 30% percent of the time (Table 5b). This discrepancy is due to the
anomalous behavior of the hili-climbing search. Hill-climbing search actually produces paths
that are shorter than the corresponding average path lengths R, over 75% of the time. Unfor-
tunately, there are always five to ten runs in each maze group that cause hill-climbing search
to produce paths that are fifty to a hundred times longer than the average lengths. Persistence
search, on the other hand, always produces paths with lengths distributed uniformly around
the corresponding average path lengths R;;. Hence, persistence search should be used if one
wants a good worst-case performance at the expense of longer computational time -- Algo-
rithm III, with persistence factors between 0.2 and 0.4, takes on the average as high as 85

computational steps for each physical step produced.

In order to better understand how persistence factor affects the performance of per-
sistence search for nontree mazes, another 7000 runs were performed and analyzed empiri-
cally. (See Table 8 for a summary of the input data.) The results of the second experiment

are summarized in Tables 9-11. For all the nontree mazes tested, Algorithm IIl seems to
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perform equally well with different persistence factors between 0.4 and 0.6. More important,
the performance ratios remain fairly constant with respect to the increasing sizes of the search
space. Hence, one can conclude from the experimental results that persistence search with
persistence factor between 0.4 and 0.6 is indeed a very good heuristic algorithm for searching

through unknown nontree mazes.

5. CONCLUSIONS

In this paper, a new search strategy is proposed to minimize the total distance traversed
by an agent in search of the target location. In light of our experimental results, persistence
search is a very good strategy for searching unknown nontree mazes. The success of per-
sistence search comes from its ability to cut across its own path to take advantage of the short
circuits in the terrain, as well as the use of the persistence factor to discount the cost of aban-
doning the current location in order to continue the exploration somewhere else. This is par-
ticularly useful in exploring unknown unbounded mazes. Persistence search (with persistence
factor less than one) always finds the goal as long as it is reachable from the starting location,
while hill-climbing search may make a wrong turn and miss the goal forever. Persistence
search is the preferred strategy for searching tree mazes if one wants to minimize the worst-
case path length. One way to improve the computational efficiency of persistence search for
tree mazes is to modify persistence search so that it behaves like hill-climbing search most of
the time and only evaluates the possibility of backtracking to another frontier vertex once

every K mechanical steps for some large constant K.
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group ' .naze number | maze grid avg. number of avg. length of
number type of mazes | density | dimension passable cells the shortest paths
() nontree S0 0.1 128 x 128 14734.38 84.76
) nontree 50 0.1 192 x 192 33503.52 120.84
3) nontree 50 0.1 256 x 256 59866.72 167.34
4 nontree 50 0.1 320 x 320 93830.20 215.70
)] nontree 50 03 128 x 128 13137.48 90.35
©) nontree 50 03 192 x 192 29875.64 142.60
)] nontree 50 03 256 x 256 53382.76 175.55
8) nontree S0 03 320 x 320 83697.34 218.54
)] nontree S0 0.5 128 x 128 11821.24 89.10
(10) nontree 50 05 192 x 192 26889.66 138.35
an nontree 50 0.5 256 x 256 48046.98 176.68
12) nontree 50 0.5 320 x 320 75283.82 24048
(13) nontree 50 0.7 128 x 128 10475.96 106.90
(14) nontree 50 0.7 192 x 192 23843.44 162.74
(15) nontree 50 0.7 256 x 256 42594.08 20543
(16) nontree 50 0.7 320 x 320 66799.02 249.33
an nontree 50 0.9 128 x 128 7808.36 177.92
(18) nontree 50 0.9 192 x 192 17914.74 226.88
(19) nontree 50 0.9 256 x 256 32259.48 300.98
(20) nontree 50 0.9 320 x 320 50661.42 38426
2N tree 50 0.1 128 x 128 8884.88 720.03
(22) tree 50 0.1 192 x 192 20156.64 1554.56
(23) tree 50 0.1 256 x 256 35960.40 2536.39
(24) tree 50 0.1 320 x 320 56326.42 3259.97
(25) tree 50 0.3 128 x 128 9077.72 869.04
(26) tree 50 0.3 192 x 192 20608.66 1932.15
7 tree 50 0.3 256 x 256 36778.46 2878.34
(28) tree 50 0.3 320 x 320 57575.86 4719.78
(29) tree 50 0.5 128 x 128 8890.08 875.58
(30) tree 50 0.5 192 x 192 20222.80 .1929.14
31) ree 50 0.5 256 x 256 36088.92 2961.83
32) tree 50 0.5 320 x 320 56561.28 3924 .45
33) tree 50 0.7 128 x 128 8168.80 745.53
(34) tree 50 0.7 192 x 192 18670.30 1573.50
(35) tree 50 0.7 256 x 256 33447.74 2526.46
(36) tree 50 0.7 320 x 320 51407.10 3821.66
37N tree 50 0.9 128 x 128 5397.86 455.80
(38) tree 50 09 192 x 192 12674.86 901.80
(39) ree 50 0.9 256 x 256 22907.76 1624.02
40) tree 50 09 320 x 320 36279.30 2340.57

Table 1 : Summary of the 2000 mazes used in the first experiment
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maze = Ru
R,
group of=00 ) pf=02 | pf=04 | pf=06 | pf=08 | pf=1.0
(1) 1.105 1.060 1.060 1.060 1.060 1.060 1.071
@) 1.080 1.061 1.061 1.061 1.061 1.061 1.074
3) 1.101 1.065 1.065 1.065 1.065 1.065 1.073
4) 1.116 1.058 1.058 1.058 1.058 1.058 1.075
(5) 1.748 1.193 1.193 1.192 1.195 1.197 1.267
(6) 1.715 1.198 1.198 1.195 1.197 1.198 1.249
@) 1.432 1.210 1.207 1207 1210 1.209 1.248
8) 2.351 1.211 1.211 1.210 1.211 1.213 1271
) 4.710 1433 1422 1.394 1.415 1.422 1.579
(10) 4.940 1454 1435 1.429 1.446 1452 1.583
an 3.948 1.435 1.428 1.417 1.425 1.430 1.561
(12) 6.434 1.460 1.438 1.435 1434 1487 1.656
(13) 10.725 2.195 2.023 1.985 1.958 2.003 2488
(14) 11.492 2213 1.998 1.986 1971 2.031 2409
(15) 13.249 2.296 2.055 1.997 2013 2.031 2453
(16) 16.514 2226 2.037 1.971 1.976 1.980 2.348
amn 17.403 14.515 6.241 5.994 6.089 6.411 7.505
(18) 31.105 12.015 5.686 5.066 5.511 6.144 8.472
(19) | 50.371 15.597 6.491 5.991 6.469 6.392 8.663
(20) | 68.756 12.093 5.608 5.305 5.216 5.581 7.118
Table 2a : Summary of the results for Algorithm II on the
nontree mazes in the first experiment
Note:
R, -- the average value of h-moves/min-moves over the 200 runs in each maze
group,
Ry -- = the average value of //-moves/min-moves over the 200 runs in each maze
group,
where
h-moves -- the total number of physical moves required by the agent to
reach the goal under hill-climbing search,
Il-moves -- the total number of physical moves required by the agent to
reach the goal under Algorithm II,
min-moves -- the length of the shortest path from s to ¢ in the entire maze.
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maze =~ Ri
R,

group pf=00 | pf=02 | pf=04 | pf=06 | pf=08 | pf=1.0
1) | 13.065 38.997 10.895 10.296 11.488 9.673 13.065
(22) | 13.666 | 67.050 14.577 14.979 14.631 13.789 13.666
(23) | 29.515 95.562 17.136 16.171 17.489 17.251 29.515
(24) | 23.079 | 110570 19.272 19.206 | 21.156 | 21.031 23.079
(25) | 10.059 31.770 10.876 10.571 10.583 9.094 10.059
(26) | 12.543 58.243 12.713 11.933 12.484 12.213 12.543
@7 | 51.699 75415 13.650 16.174 18.977 18.357 51.699
(28) | 26.052 | 109.929 16.981 20367 | 22.071 18.719 26.052
(29) | 11.863 33.949 9.291 10.315 10.824 9.384 11.863
(30) | 19.964 54.030 11.058 12.647 13.566 12.528 19.964
(31) | 17.367 72.856 15.579 15.141 15.927 15.336 17.367
32y | 22.518 94564 16.875 18.393 20.809 20476 | 22518
(33) | 10.069 32.153 9.023 9.370 9.044 9.736 10.069
(34) | 18.723 46.966 12.327 11.305 11.729 12.003 18.723
(35) | 20.672 70.423 13.882 15.400 15.399 15.133 20.672
(36) | 46.383 90.225 14.504 15.458 18.954 16.293 46.383
37 10.989 31.353 1.724 8.086 7.298 8.905 | 10989 |
(38) ! 30.009 | 48.389 10.447 10.460 10.028 10.274 | 30.009
(39) | 24.401 70.389 13.050 13.078 12.920 15.196 | 24.401 |
(40) 17.953 82.959 13.639 14.820 14.251 13.847 [ 17.953 |

Table 2b : Summary of the results for Algorithm II on the

tree mazes in the first expenment
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maze _ Ry
Ry
group pf=00 | pf=02 | pf=04 | pf=06 | pf=08 | pf=10
m 1.105 1.060 1.060 1.060 1.060 1.060 1.071
2) 1.080 1.061 1.061 1.061 1.061 1.061 1.074
3) 1.101 1.065 1.065 1.065 1.065 1.065 1.073
“) 1.116 1.058 1.058 1.058 1.058 1.058 1.075
&) 1.748 1.193 1.193 1.192 1.195 1.197 1267
6) 1.715 1.198 1.198 1.195 1.197 1.198 1.249
0] 1.432 1.210 1.207 1.207 1.210 1.209 1.248
8) 2.351 1.211 1211 1.210 1.211 1.213 127
)] 4.710 1433 1422 1.394 1.415 1422 1.579
(10) 4.940 1454 1435 1429 1.446 1452 1.583
(11) 3.948 1.435 1428 1417 1.425 1430 1.561
(12) 6.434 1.460 1.438 1.435 1434 1.487 1.656
(13) 10.725 2.195 2.023 1.985 1.958 2.003 2.488
(14) 11.492 2213 1.998 1.986 1.971 2.030 2.409
(15) 13.249 2.296 2.055 1.996 2013 2.031 2.453
(16) 16.514 2.226 2.037 1.972 1.976 1.980 2.348
(i7) 17.403 14515 6.242 6.020 6.092 6411 7.505 |
(18) 31.105 12.015 5.686 5.064 5.512 6.144 8.472
19) 50.371 15.597 6.491 5993 6.471 6.394 8.663
(20) | 68.756 12.093 5.608 5.305 5213 5.581 7.118
Table 3a: Summary of the results for Algorithm IIT on the
nontree mazes in the first experiment
Note:
R, -- the average value of h-moves/min-moves over the 200 runs in each maze
gTOUp-
Ry - = the average value of Ill-moves/min-moves over the 200 runs in each maze
group,
where
h-moves -- the total number of physical moves required by the agent to
reach the goal under hill-climbing search,
Ill-moves --  the total number of physical moves required by the agent to
reach the goal under Algorithm III,
min-moves --  the length of the shortest path from s to ¢ in the entire maze.
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maze =
R,

group pf = 0.0 pof = 0.2 pf=04 pf=06 pf =08 pf=10

(21) 13.065 38.997 10.895 10.296 11.488 9.673 13.065
(22) 13.666 67.030 14.577 14.979 14.631 13.789 13.666
(23) | 29.515 95.562 17.136 16.171 17.489 17.251 29.515
(24) |} 23.079 | 110570 19.272 19.206 21.156 21.031 23.079

(29) 10.059 31.770 10.876 10.571 10.583 9.094 10.059
(26) 12.543 58.243 12.713 11.933 12.484 12.213 12.543
27) | 51.699 75415 13.650 16.174 18.977 18.357 51.699
(28) | 26.052 | 109.929 16.981 20.367 22.0Mm 18.719 26.052

29 11.863 33.949 9.201 10315 10.824 9.384 11.863
(30) 19.964 54.030 11.058 12.647 13.566 12.528 19.964
3y 17.367 72.856 15.579 15.141 15.927 15.336 17.367
(32) | 22.518 94.564 16.875 18.393 20.809 20.476 22518

(33) 10.069 32153 9.023 9.370 9.044 9.736 10.069
34 18.723 46.966 12.327 11.305 11.729 12.003 18.723
(35) | 20.672 70.423 13.882 15.400 15.399 15.133 20.672
(36) | 46.383 90.225 14.504 15.458 18.954 16.293 46.383

[ (37) 10.989 31.353 7.724 8.086 7.298 8.905 10.989
' (38) | 30.009 48.389 10.447 10.460 10.028 10.274 30.009
(39) 24.401 70.389 13.050 13.078 12.92 15.196 2440
(40) 17.953 82.959 13.639 14.820 14.251 13.847 17.953

Table 3b : Summary of the results for Algorithm Il oa the
tree mazes in the first experiment
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group maze number maze grnd avg. number of avg. length of
number type of mazes | density | dimension passable cells the shortest paths
“1) nontree S0 0.1 128 x 128 14735.60 81.12
(42) nontree 50 0.1 192 x 192 33498.10 12792 |
43) nontree 50 0.1 256 x 256 59854.94 178.71
(44) nontree 50 0.1 320 x 320 93825.78 213.85
45) nontree 50 0.1 384 x 384 135424.20 248.73
(46) nontree 50 0.1 448 x 448 184573.90 283.32
@7 nontree 50 0.1 512 x 512 241348.26 338.12
(48) nontree 50 0.3 128 x 128 13135.72 92.65
(49) nontree 50 0.3 192 x 192 29874.00 132.12
(50) nontree 50 0.3 256 x 256 §3392.28 174.03
(51) nontree 50 0.3 320 x 320 83700.30 209.69
(52) nontree 50 0.3 384 x 384 120756.36 231.48
(53) nontree 50 0.3 448 x 448 164621.70 306.44
(54) nontree 50 0.3 512 x 512 215232.52 339.97
(55) nontree 50 0.5 128 x 128 11825.30 84.90
(56) nontree 50 0.5 192 x 192 26873.38 146.76
X)) nontree 50 0.5 256 x 256 48046.96 172.79
(58) nontree S0 0.5 320 x 320 75301.88 230.09
(59) nontree S0 0.5 384 x 384 108664.68 275.99
(60) nontree 50 0.5 448 x 448 148092.66 293.89
61) nontree S0 0.5 512 x 512 193664.86 336.02
(62) nontree 50 0.7 128 x 128 10476.06 107.81
(63) nontree S0 0.7 192 x 192 23821.20 142.65
(64) nontree 50 0.7 256 x 256 42604.00 186.06
(65) nontree 50 0.7 320 x 220 66786.08 240.72
(66) nontree 50 0.7 384 x 384 96425.50 304.05 !
(67) nontree 50 0.7 448 x 448 131414.64 346.17 |
(68) nontree 50 0.7 512 x 512 171841.42 430.79 |
(69) nontree 50 09 128 x 128 7800.44 155.87
(70) nontree 50 0.9 192 x 192 17865.94 249.40
(71) | nontree 50 0.9 256 x 256 32196.04 312.63 1
72) nontree 50 0.9 320 x 320 50536.52 39220
3 nontree 50 0.9 384 x 384 73132.48 42922
(74) nontree 50 0.9 448 x 448 99938.46 482.32 ;
a5 nontree 50 0.9 512 x 512 130727.92 568.87 1

Table 8 : Summary of the 1750 mazes used in the second experiment
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maze _ Ry
Ry

group =040 | pf=045 | pf=0.50 | pf=0.55 | pf =060
@an 1.222 1.066 1.066 1.066 1.066 1.066
42) 1.438 1.066 1.066 1.067 1.067 1.067
“3) 1.146 1.070 1.070 1.071 1.071 1.071
(44) 1.077 1.062 1.062 1.062 1.062 1.062
4s) 1.069 1.062 1.062 1.062 1.062 1.062
46) 1.074 1.064 1.064 1.064 1.064 1.064
“n 1.081 1.063 1.063 1.063 1.063 1.063
48) 1.781 1.194 1.194 1.193 1.193 1.194
49 1.552 1.200 1.200 1.202 1202 1.202
(50) 2.367 1.207 1.207 1.210 1210 1.211
(51) 2.764 1.196 1.196 1.198 1.198 1.199
(52) 1.490 1.208 1.207 1.209 1.209 1.210
(53) 1.406 1.222 1.222 1.223 1223 1.225 -
(54) 1.390 1.188 1.188 1.189 1.189 1.189
(55) 2.995 1.438 1.438 1.423 1423 1.432
(56) 5641 1412 1414 1.419 1418 1416
(57 3.812 1.500 1.500 1.508 1.508 1.523
(58) 4.624 1.408 1.411 1.411 1411 1413
(59) 11.396 1.428 1.429 1.433 1.433 1.436
60) 2.542 1.444 1.444 1.445 1.446 1.445
® 3.067 1437 1.438 1.435 1.435 1.438
(62) 10.408 2.062 2.087 2.078 2.078 2.100
(63) 32.736 2123 2.132 2.115 2.117 2.095
(64) 11.397 1.928 1.934 1.927 1.925 1.934
(65) | 36.639 1.990 1.983 1.995 1.999 2.015
66) | 19.107 1.996 2.011 2.011 2.014 2.026
67 16.616 2.010 2.011 1.975 1.980 1.970
(68) | 32.626 1.966 1.958 1.965 1.967 1.963
©9) | 23.815 | s5.131 5211 5.285 5.293 5.485
(70) 213 5.096 5.031 4918 5.100 5.306
(71) | 53.981 5.141 5.231 5.018 4969 5.216
(72) 46.527 5.751 5.321 5.699 5.800 5.509
(73) | 63.471 5.567 5.555 5.408 5.399 5.621
(78) | 67.442 5.106 5.275 5.289 5.263 5.095
€4)) 78.456 5.668 5.849 5.895 6.069 5937

Table 9 : Summary of the results for Algorithm I on the
nontree mazes in the second experiment
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4

e pf =040 pf =045 pf =050 7l =058 pf = 0.60
goup | m<h  m=h w>h | m<h m=h w>h | m<h w=h 1w>h | m<h 1mwW=h m>h | m<h m=h @m>h
(41) 18 173 9 18 173 9 18 173 9 18 173 9 18 173 9
(42) 31 152 17 31 152 17 31 152 17 31 152 17 31 152 17
(43) 42 129 29 42 129 29 42 129 29 42 129 29 42 129 29
(44) 39 132 29 39 132 29 39 132 29 39 132 29 39 132 29
(45) 40 132 28 40 132 28 40 132 28 40 132 28 40 132 28
(46) 51 126 23 51 126 23 51 126 23 51 126 3 51 126 23
47 52 118 30 52 118 30 52 118 30 52 118 30 52 118 30
(48) 100 54 46 100 54 46 101 53 46 101 53 46 101 53 46
49 100 48 52 100 48 52 100 48 52 100 48 52 100 43 52
(50) 110 28 62 110 28 62 110 28 62 110 28 62 109 29 62
(51) i 35 43 122 35 43 12 35 43 122 35 43 121 36 43
(52) 124 24 52 124 24 52 122 25 53 122 25 53 120 26 54
(53) 138 17 45 138 17 45 137 16 47 137 16 47 136 15 49
(54) 135 19 46 135 19 46 134 21 45 134 21 45 134 21 45
(55) 119 30 51 119 30 51 119 30 51 119 30 51 119 29 52
(56) 138 11 51 137 11 52 136 11 53 136 11 53 135 10 55
(57 136 12 52 136 12 52 137 12 51 137 12 51 138 12 50
(58) 153 9 38 152 7 41 152 7 41 152 7 41 151 8 41
(59) 154 3 43 154 2 44 152 3 45 152 3 45 152 3 45
(60) 147 6 47 147 6 47 148 4 48 148 4 48 148 6 46
(61) 147 4 49 145 4 51 148 4 48 148 4 48 147 3 50
(62) 162 3 KM 161 4 35 164 3 33 165 3 R 165 4 3
(63) 148 6 46 146 6 483 147 7 46 147 7 46 147 6 47
(64) 152 1 47 152 1 47 150 2 48 150 2 48 150 2 48
(65) 153 2 45 154 3 43 155 2 43 155 2 43 154 4 42
(66) 152 2 46 152 1 47 152 0 48 151 0 49 151 1 48
(67) 160 2 38 164 1 35 160 2 38 160 2 38 162 3 37
(68) 174 0 26 174 1 25 1M 0 29 17 0 29 171 0 29
(69) 132 8 60 133 8 59 128 8 64 130 8 62 129 10 61
70) 154 0 46 156 0 44 155 0 45 152 1 47 151 0 49
(1) 150 2 48 152 2 46 155 2 43 154 2 44 149 2 49
72) 158 1 41 157 1 42 156 1 43 155 2 43 156 i 43
(73) 154 0 46 157 0 42 161 0 39 157 0 43 159 0 41
(74) 164 0 36 162 0 38 160 0 40 160 0 40 162 0 38
(75) 155 1 44 151 1 48 150 )| 49 150 1 49 ] 15 1 48
Table 10 : Comparisons between Algorithm I and hill-climbing search

for the nontree mazes in the second experiment
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maze pf =040 pf =045 pf = 0.50 pf = 0.55 pf = 0.60
group | v-exam h-op v-exam h-op v-exam h-op v-exnm h-op v-exam h-op
41) 1.132  17.056 1.135  17.056 1.094 17.056 1.127 17056 1.130  17.056
(42) 1.146 19.362 1.140 19.362 1.097  19.359 1.134 19359 1.130  19.358
43) 1.143  20.990 1.134  20.990 1.097 20989 1.135  20.989 1.127 20987
(44) 1.123  22.004 1.112 22.004 1.081  22.004 1.122 22.004 1.110 22.004
“5) 1.127  22.610 1.118 22610 1.086 22.610 1.129 22610 1.122 22,608
(46) 1.122 23432 1.114 23432 1.084 23432 1.127 23432 1.118 23.432
CY)) 1.125  24.180 1.112  24.180 1084 24.181 1.131 24181 1.118  24.181
48) 1389 14.009 1.403  14.009 1.308 14.023 1.371 14,023 1391 14023
(49) 1454  15.349 1444  15.349 1367 1534 1443 15344 1451 15349
(50) 1441 16415 1426 16415 1.355 16416 1441 16416 1445 16.413
(51) 1.391  17.203 1377  17.204 1309 17.197 1.394  17.197 1391 17.192
(52) 1412 17.823 1.385 17.826 1318 17.821 1418 17.821 1402 17.820
(53) 1458 18.629 1.440 18.680 1364 18682 1.462  18.682 1467 18.672
(54) 1367 19.321 1.351  19.321 1291 19327 1386  19.327 1.376  19.324
(55) 1.790  10.165 1796  10.166 1672 10.188 1.780  10.188 1.833 10.183
(56) 1.811  12.215 1.805 12.212 1693 12214 1.806 12.218 1.801 12.226
(57 1902 12.507 1.891  12.517 1.786  12.528 1.913 12533 1.942 12.535
(58) 1.763  13.635 1.771  13.633 1.641  13.637 1.764  13.637 1.775  13.650
(59) 1.798 14.343 1.766  14.341 1.677 14.328 1.810 14.327 1.811 14.325
(60) 1853 14464 1.833  14.468 1.762 14.482 1.899  14.482 1.877 14.476
(61) 1.833 14810 1.807 14.812 1.716  14.860 1.867 14.860 1.882 14.848
(62) 2.7110 7.475 2.817 7.466 2.667 7.504 2.814 7.504 3.024 7.492
(63) 2197 8.080 2.364 8.079 2.745 8.108 2.891 8.107 2.927 8.166
(64) 2.540 8.992 2.523 8.989 2.447 9.009 2.601 9.017 2.644 9.035
{65) 2,610 9.571 2.597 9.583 2.515 9.587 2.7U00 9.587 2.810 9.593
(66) 2625 10.219 2717 10.203 2611  10.220 2779 10.218 2863 10.212
67) 2.744  10.239 2747  10.260 2.555 10324 2732 10316 2819  10.349
(68) 2627 11.135 2588 11172 2476 11.203 2.663  11.200 2740 11.232
(69) 8.163 3.829 9.760 3843 | 10.452 3.857 | 11.030 3.836 | 10.720 3.858
(70) 8.389 4.442 8.175 4.493 8.563 4.554 9.208 4.551 9.704 4.556
) 10.319 4.655 9.844 4.706 9.235 4.749 9.397 4.760 | 10.196 4.741
(72) 9.711 4.887 9.124 4943 | 10417 4978 | 10.919 5.002 | 10.337 5.074
(73) 10.296 4979 | 10.159 5003 | 107395 AR AR 5101 | 11.841 5.125
(74) 9.363 5.335 | 10.528 5324 ¢ 10.895 5.382 | 11.468 5.382 | 10.284 5.490
75) 13.050 5372 | 13.775 5397 | 14978 5466 | 16.762 5478 [ 15.677 5.526

Table 11 : Average number of vertex examinations and heap exchanges required
by Algorithm III for the nontree mazes in the second expenment
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